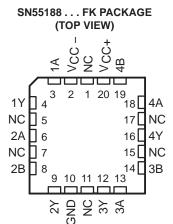

- Meet or Exceed the Requirements of ANSI TIA/EIA-232-E and ITU Recommendation V 28
- Current-Limited Output: 10 mA Typical
- Power-Off Output Impedance: 300 Ω Minimum
- Slew Rate Control by Load Capacitor
- Flexible Supply-Voltage Range
- Input Compatible With Most TTL Circuits


description/ordering information

The MC1488, SN55188, and SN75188 are monolithic quadruple line drivers designed to interface data terminal equipment with data communications equipment in conformance with ANSI TIA/EIA-232-E, using a diode in series with each supply-voltage terminal as shown under typical applications.

The SN55188 is characterized for operation over the full military temperature range of -55°C to 125°C. The MC1488 and SN75188 are characterized for operation from 0°C to 70°C.

SN55188...J OR W PACKAGE SN75188...D, N, OR NS PACKAGE MC1488...N PACKAGE (TOP VIEW)

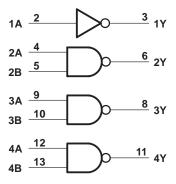
NC - No internal connection

ORDERING INFORMATION

TA	PACKAGI	<u>=</u> †	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	DDID (AI)	Tube of 25	MC1488N	MC1488N
0°C to 70°C	PDIP (N)	Tube of 25	SN75188N	SN75188N
	COIC (D)	Tube of 50	SN75188D	CN75400
	SOIC (D)	Reel of 2500	SN75188DR	SN75188
	SOP (NS)	Reel of 2000	SN75188NSR	SN75188
	CDID (I)	Tube of 25	SN55188J	SN55188J
-55°C to 125°C	CDIP (J)	Tube of 25	SNJ55188J	SNJ55188J
-55°C to 125°C	CFP (W)	Tube of 150	SNJ55188W	SNJ55188W
	LCCC (FK)	Tube of 55	SNJ55188FK	SNJ55188FK

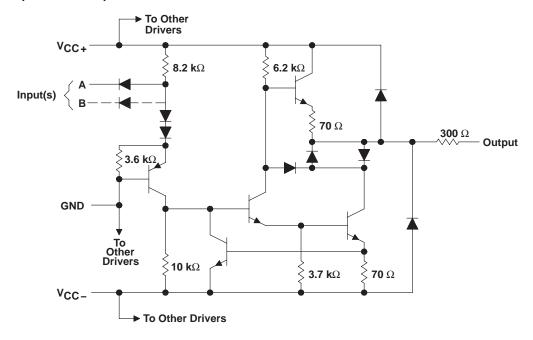
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


1

FUNCTION TABLE (drivers 2-4)

Α	В	Υ
Н	Н	L
L	X	Н
Χ	L	Н


H = high level, L = low level, X = irrelevant

logic diagram (positive logic)

Positive logic $Y = \overline{A} (driver 1)$ $Y = \overline{AB} \text{ or } \overline{A} + \overline{B} (drivers 2 \text{ thru 4})$

schematic (each driver)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{CC+} at (or below) 25°C free-air temperature (see Notes 1 and 2)
Supply voltage, V _{CC} at (or below) 25°C free-air temperature (see Notes 1 and 2)
Input voltage, V_1
Output voltage, V $_{\hbox{\scriptsize O}}$
Continuous total power dissipation (see Note 2) See Dissipation Rating Table
Package thermal impedance, θ_{JA} (see Notes 3 and 4): D package
N package 80°C/W
NS package 76°C/W
Operating virtual junction temperature, T _J
Case temperature for 60 seconds, FK package
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J or W package
Storage temperature range, T _{sta} 65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the network ground terminal.
 - 2. For operation above 25°C free-air temperature, refer to the maximum supply voltage curve, Figure 6. In the J package, SN55188 chips are alloy mounted.
 - 3. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Selecting the maximum of 150°C can affect reliability.
 - 4. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	275 mW
W	1000 mW	8.0 mW/°C	640 mW	200 mW

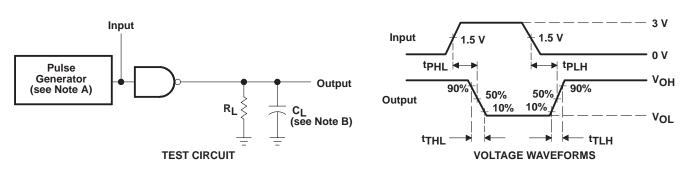
recommended operating conditions

		SN55188 MC1488, SN75188					LINUT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC+}	Supply voltage	7.5	9	15	7.5	9	15	V
VCC-	Supply voltage	-7.5	-9	-15	-7.5	-9	-15	V
VIH	High-level input voltage	1.9			1.9			V
VIL	Low-level input voltage			0.8			8.0	V
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over operating free-air temperature range, $V_{CC\pm}$ = ± 9 V (unless otherwise noted)

				;	SN55188		MC14	88, SN7	5188	
	PARAMETER	TEST CON	IDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
\/a	High-level output voltage	V _{IL} = 0.8 V,	V _{CC+} = 9 V, V _{CC-} = -9 V	6	7		6	7		V
VOH	nigir-ievei output voitage	R _L = 3 kΩ	$V_{CC+} = 13.2 \text{ V},$ $V_{CC-} = -13.2 \text{ V}$	9	10.5		9	10.5		V
Voi	V _{OL} Low-level output voltage	V _{IH} = 1.9 V,	V _{CC+} = 9 V, V _{CC-} = -9 V		_ 7 ‡	-6		-7	-6	V
VOL		$R_L = 3 k\Omega$	$V_{CC+} = 13.2 \text{ V},$ $V_{CC-} = -13.2 \text{ V}$		-10.5 [‡]	-9		-10.5	-9	v
lіН	High-level input current	V _I = 5 V				10			10	μΑ
I _{IL}	Low-level input current	V _I = 0			-1	-1.6		-1	-1.6	mA
IOS(H)	Short-circuit output current at high level§	V _I = 0.8 V,	V _O = 0	-4.6	-9	-13.5	-6	-9	-12	mA
I _{OS(L)}	Short-circuit output current at low level§	V _I = 1.9 V,	V _O = 0	4.6	9	13.5	6	9	12	mA
r _O	Output resistance, power off	$V_{CC+} = 0,$ $V_{O} = -2 \text{ V to 2 V}$	$V_{CC} = 0$,	300			300			Ω
	·	V _{CC+} = 9 V,	All inputs at 1.9 V		15	20		15	20	mA
		No load	All inputs at 0.8 V		4.5	6		4.5	6	
loo .	Supply current from	$V_{CC+} = 12 V$,	All inputs at 1.9 V		19	25		19	25	
ICC+	V _{CC+}	No load	All inputs at 0.8 V		5.5	7		5.5	7	
		$V_{CC+} = 15 \text{ V},$	All inputs at 1.9 V			34			34	
		No load, T _A = 25°C	All inputs at 0.8 V			12			12	
		$V_{CC} = -9 V$,	All inputs at 1.9 V		-13	-17		-13	-17	
		No load	All inputs at 0.8 V			-0.5			-0.015	
lcc-	Supply current from I _{CC} _	$V_{CC} = -12 \text{ V},$	All inputs at 1.9 V		-18	-23		-18	-23	mA
1.00-		No load	All inputs at 0.8 V			-0.5			-0.015	
		$V_{CC} = -15 \text{ V},$	All inputs at 1.9 V			-34			-34	
		No load, T _A = 25°C	All inputs at 0.8 V			-2.5			-2.5	
PD	Total power dissipation	V _{CC+} = 9 V, No load	V _{CC} _=-9 V,			333			333	mW
רים	rotai powei dissipation	V _{CC+} = 12 V, No load	$V_{CC-} = -12 \text{ V},$			576			576	IIIVV

[†] All typical values are at T_A = 25°C. ‡ The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for logic voltage levels only, e.g., if -6 V is a maximum, the typical value is a more negative voltage.


[§] Not more than one output should be shorted at a time.

switching characteristics, $V_{CC\pm}$ = ± 9 V, T_A = $25^{\circ}C$

	PARAMETER	TEST CON	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time, low- to high-level output				220	350	ns
tPHL	Propagation delay time, high- to low-level output	$R_L = 3 k\Omega$,	C _L = 15 pF,		100	175	ns
tTLH	Transition time, low- to high-level output [†]	See Figure 1			55	100	ns
tTHL	Transition time, high- to low-level output [†]	Ī			45	75	ns
tTLH	Transition time, low- to high-level output‡	$R_L = 3 k\Omega$ to $7 k\Omega$,	C _L = 2500 pF,		2.5		μs
tTHL	Transition time, high- to low-level output‡	See Figure 1			3.0		μs

[†] Measured between 10% and 90% points of output waveform

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: t_W = 0.5 μ s, PRR \leq 1 MHz, Z_O = 50 Ω .

B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms

[‡] Measured between 3 V and -3 V points on the output waveform (TIA/EIA-232-E conditions)

TYPICAL CHARACTERISTICS[†]

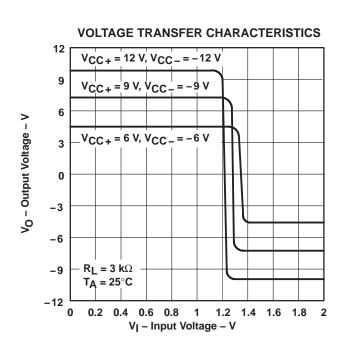
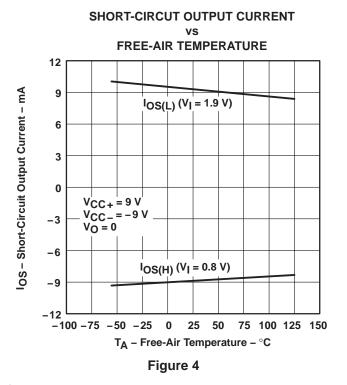
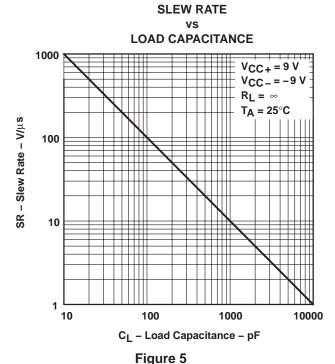




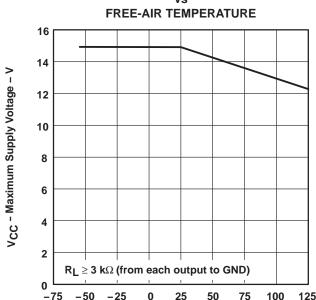
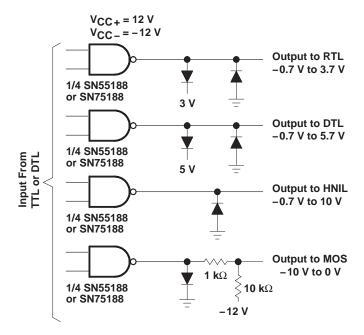
Figure 2

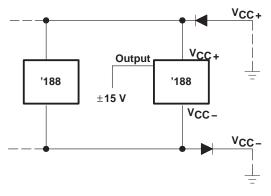
Figure 3

[†] Data for temperatures below 0°C and above 70°C are applicable to SN55188 circuit only.

THERMAL INFORMATION[†]

MAXIMUM SUPPLY VOLTAGE


Figure 6

T_A - Free-Air Temperature - °C

APPLICATION INFORMATION

Figure 7. Logic Translator Applications

Diodes placed in series with the V_{CC+} and V_{CC-} leads protect the SN55188/SN75188 in the fault condition in which the device outputs are shorted to ± 15 V, and the power supplies are at low voltage and provide low-impedance paths to ground.

Figure 8. Power-Supply Protection to Meet Power-Off Fault Conditions of ANSI TIA/EIA-232-E

[†] Data for temperatures below 0°C and above 70°C are applicable to the SN55188 circuit only.

www.ti.com 1-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
5962-86889012A	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 86889012A SNJ55 188FK
5962-8688901CA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8688901CA SNJ55188J
5962-8688901DA	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8688901DA SNJ55188W
MC1488N	Obsolete	Production	PDIP (N) 14	-	-	Call TI	Call TI	0 to 70	MC1488N
SN55188J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	SN55188J
SN75188D	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	0 to 70	SN75188
SN75188DR	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75188
SN75188N	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	0 to 70	SN75188N
SN75188NSR	Active	Production	SOP (NS) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	SN75188
SNJ55188FK	Active	Production	LCCC (FK) 20	55 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962- 86889012A SNJ55 188FK
SNJ55188J	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8688901CA SNJ55188J
SNJ55188W	Active	Production	CFP (W) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-8688901DA SNJ55188W

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

www.ti.com 1-May-2025

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

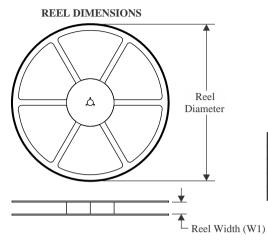
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

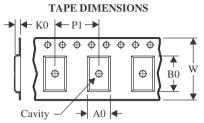
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55188, SN75188:

Catalog: SN75188

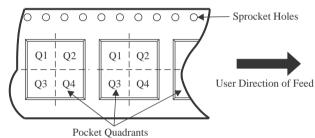
Military: SN55188


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

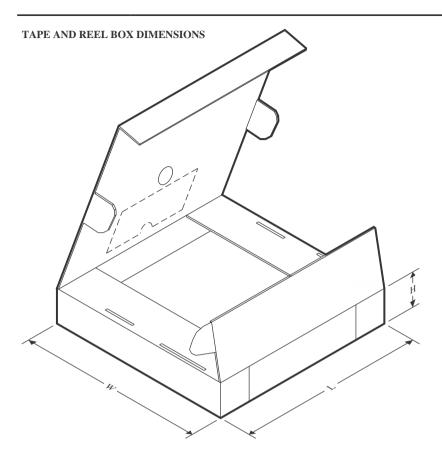
PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

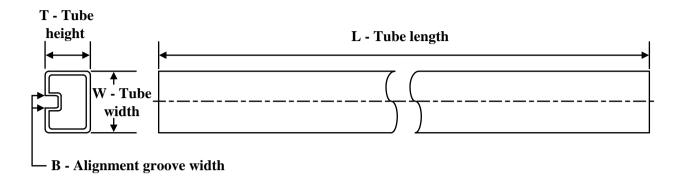
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75188DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN75188NSR	SOP	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com 13-May-2025

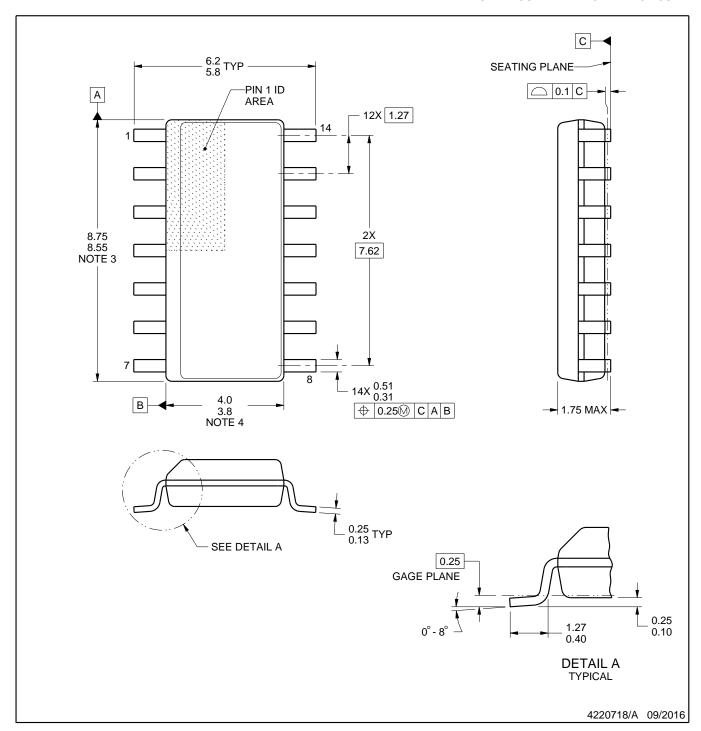

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN75188DR	SOIC	D	14	2500	356.0	356.0	35.0
SN75188NSR	SOP	NS	14	2000	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 13-May-2025

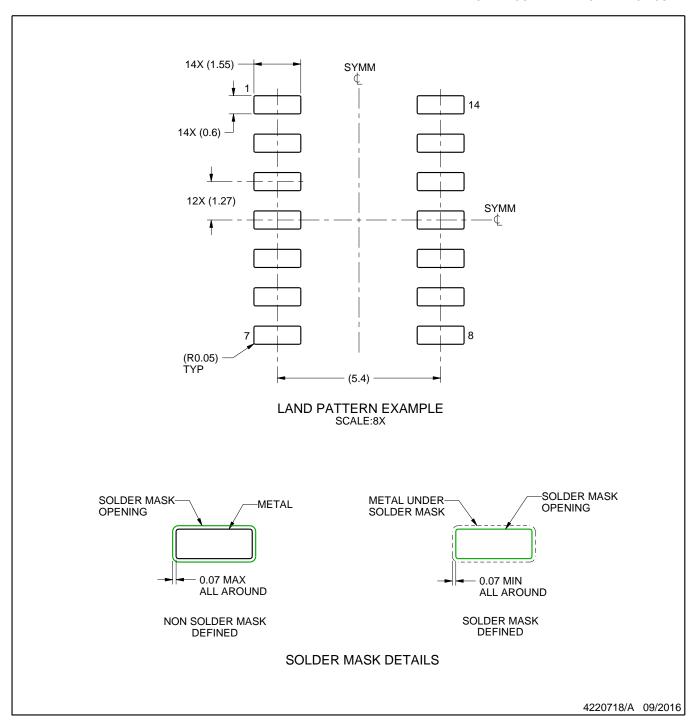
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
5962-86889012A	FK	LCCC	20	55	506.98	12.06	2030	NA
5962-8688901DA	W	CFP	14	25	506.98	26.16	6220	NA
SN75188N	N	PDIP	14	25	506	13.97	11230	4.32
SN75188N	N	PDIP	14	25	506	13.97	11230	4.32
SNJ55188FK	FK	LCCC	20	55	506.98	12.06	2030	NA
SNJ55188W	W	CFP	14	25	506.98	26.16	6220	NA

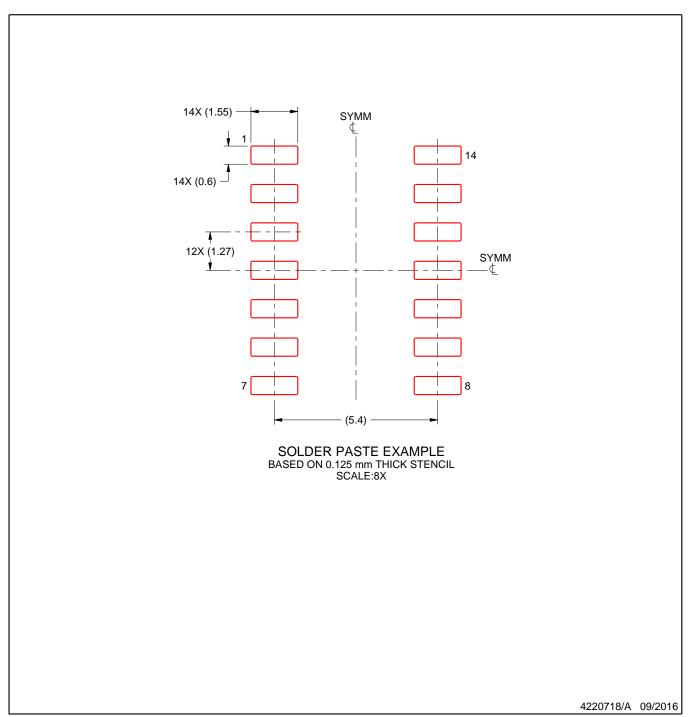
SMALL OUTLINE INTEGRATED CIRCUIT


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

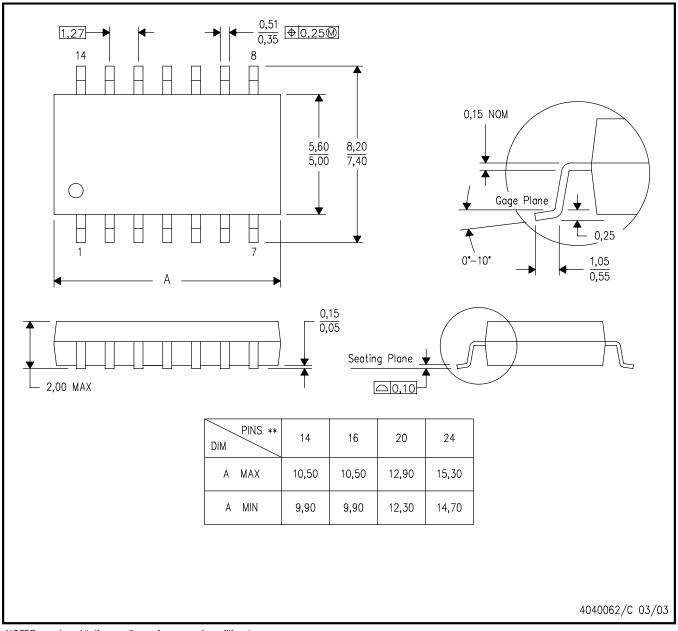
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

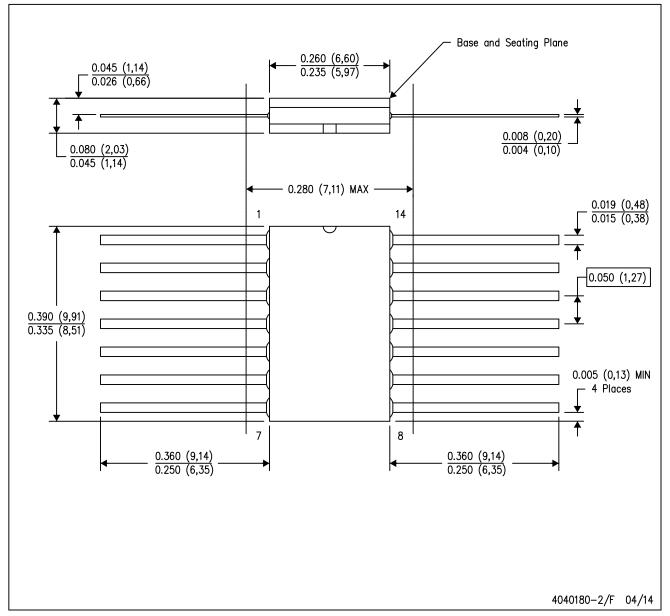


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

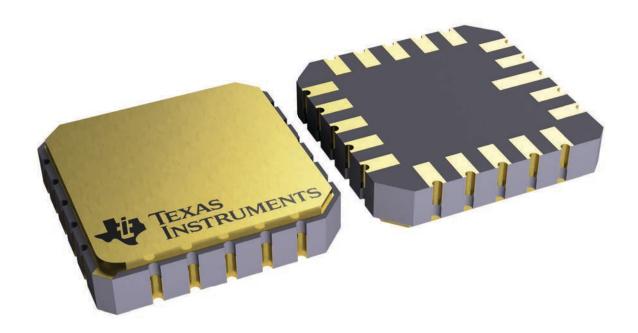
PLASTIC SMALL-OUTLINE PACKAGE

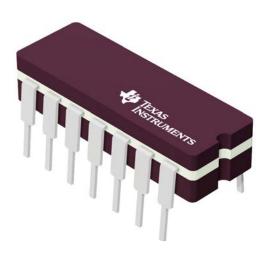


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

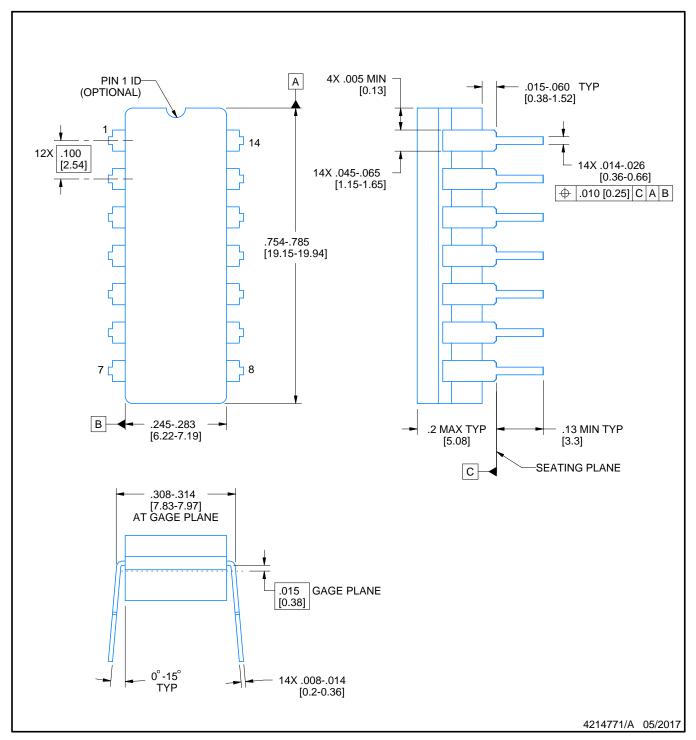

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F14


8.89 x 8.89, 1.27 mm pitch

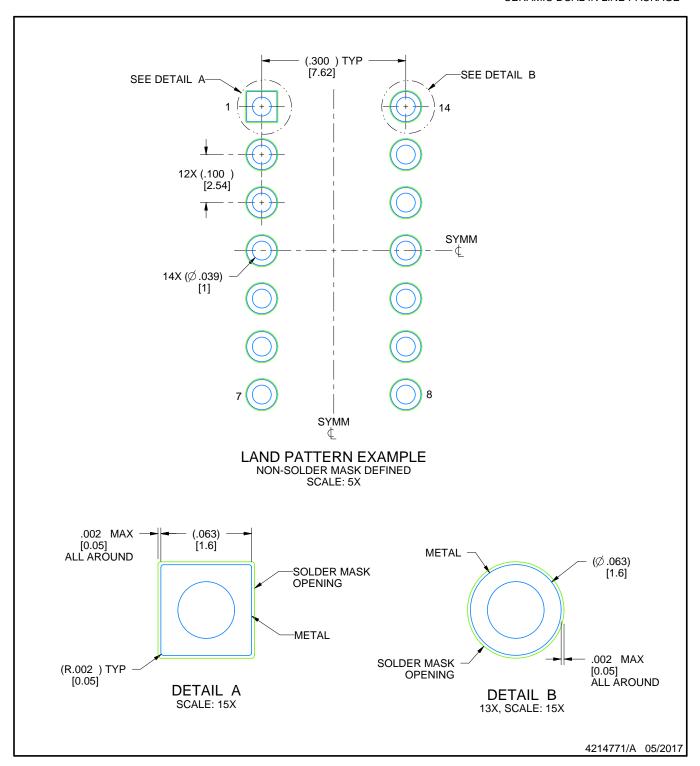
LEADLESS CERAMIC CHIP CARRIER

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040083-5/G


CERAMIC DUAL IN LINE PACKAGE

- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.

CERAMIC DUAL IN LINE PACKAGE

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated