# **Low Power Consumption LDO ME6209 Series** #### **General Description** The ME6209 series are a group of positive voltage output, three –pin regulator, that provide a high current even when the input/output Voltage differential is small. Low power consumption and high accuracy is achieved through CMOS technology. They allow input voltages as high as 18V. #### **Features** - Ultra low quiescent current: 3.0uA(typ) - High input voltage (up to 18V) - Low dropout voltage :80mV@lout=40mA (V<sub>OUT</sub>=3.3V) - Output voltage accuracy: ±2% - Maximum output current: 250mA (within max.power dissipation, V<sub>OUT</sub> =3.3V) - Low temperature coefficient - Package: SOT23-3、TO-92、SOT89-3 ## **Selection Guide** ## **Typical Application** - Cameras, video recorders - Voltage regulator for microprocessor - Voltage regulator for LAN cards - Wireless communication equipment - Audio/Video equipment ## **Typical Application Circuit** # **Pin Configuration** # **Pin Assignment** ## ME6209AXX | Pin Number | | Pin Name | Functions | | |-----------------------|---|------------------|-----------|--| | SOT89-3/TO-92 SOT23-3 | | Fili Naille | | | | 1 | 1 | $V_{SS}$ | Ground | | | 2 | 3 | $V_{IN}$ | Input | | | 3 | 2 | V <sub>OUT</sub> | Output | | # **Absolute Maximum Ratings** | Parameter | | Symbol | Ratings | Units | |-----------------------------|---------|------------------|------------------------------|------------| | Input Voltage | | V <sub>IN</sub> | 18 | V | | Output Voltage | | $V_{OUT}$ | Vss-0.3∼V <sub>IN</sub> +0.3 | V | | Output Current | | I <sub>OUT</sub> | 500 | mA | | Operating Temperature Range | | T <sub>OPR</sub> | <b>-40</b> ~+85 | $^{\circ}$ | | Storage Temperature Range | | T <sub>STG</sub> | -40~+125 | $^{\circ}$ | | | SOT89-3 | | 500 | | | <b>Power Dissipation</b> | TO-92 | $P_{D}$ | 500 | mW | | | SOT23-3 | | 300 | | V04 <u>www.microne.com.cn</u> Page 2 of 8 ## **Block Diagram** # **Electrical Characteristics** ME6209A33 $\underline{(V_{\text{IN}}\text{=}~V_{\text{OUT}}\text{+}1.0\text{V},~C_{\text{IN}\text{=}}C_{\text{L}}\text{=}10\text{uF},~\text{Ta=25}^{\text{O}}\text{C},\,\text{unless otherwise noted)}}$ | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |-----------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|--------|-------| | Output Voltage | V <sub>OUT</sub> (E)<br>(Note 2) | I <sub>OUT</sub> =40mA,<br>V <sub>IN</sub> =V <sub>OUT</sub> +1V | X 0.98 | V <sub>OUT</sub> (T)<br>(Note 1) | X 1.02 | V | | Input Voltage | V <sub>IN</sub> | | | | 18 | V | | Maximum Output Voltage | I <sub>OUT</sub> _max | V <sub>IN</sub> =V <sub>OUT</sub> +1V | 250 | | | mA | | Load Regulation | $\Delta V_OUT$ | V <sub>IN</sub> =V <sub>OUT</sub> +1V,<br>1mA≤I <sub>OUT</sub> ≤60mA | | 15 | 40 | mV | | Dropout Voltage<br>(Note 3) | $V_{DIF}$ | I <sub>OUT</sub> =40mA | | 80 | | mV | | Supply Current | I <sub>SS</sub> | V <sub>IN</sub> =V <sub>OUT</sub> +1V | | 3 | 4 | μА | | Line Regulations | $\frac{\Delta V_{OUT}}{\Delta V_{IN} \times V_{OUT}}$ | $I_{OUT} = 40 \text{mA}$ $V_{OUT} + 1V \le V_{IN} \le 18V$ | | 0.1 | 0.2 | %/V | | △VOUT/△Ta | Temperature<br>Coefficient | $V_{\text{IN}} = V_{\text{OUT}} + 1V$ , $I_{\text{OUT}} = 40 \text{mA}$<br>- $40 ^{\circ}\text{C} < \text{Ta} < 85 ^{\circ}\text{C}$ | | ±0.7 | | mV/℃ | V04 <u>www.microne.com.cn</u> Page 3 of 8 #### ME6209A40 ( $V_{IN}=V_{OUT}+1.0V$ , $C_{IN}=C_{L}=10uF$ , Ta=25 $^{O}$ C, unless otherwise noted) | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |-----------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|--------|-------| | Output Voltage | V <sub>OUT</sub> (E)<br>(Note 2) | I <sub>OUT</sub> =40mA,<br>V <sub>IN</sub> =V <sub>OUT</sub> +1V | X 0.98 | V <sub>OUT</sub> (T)<br>(Note 1) | X 1.02 | V | | Input Voltage | $V_{IN}$ | | | | 18 | V | | Maximum Output Voltage | I <sub>OUT</sub> _max | V <sub>IN</sub> =V <sub>OUT</sub> +1V | 250 | | | mA | | Load Regulation | $\Delta V_{OUT}$ | V <sub>IN</sub> =V <sub>OUT</sub> +1V,<br>1mA≤I <sub>OUT</sub> ≤60mA | | 15 | 40 | mV | | Dropout Voltage<br>(Note 3) | $V_{DIF}$ | I <sub>OUT</sub> =40mA | | 70 | | mV | | Supply Current | I <sub>SS</sub> | V <sub>IN</sub> =V <sub>OUT</sub> +1V | | 3 | 4 | μА | | Line Regulations | $\frac{\Delta V_{\text{OUT}}}{\Delta V_{\text{IN}} \times V_{\text{OUT}}}$ | $I_{OUT} = 40 \text{mA}$ $V_{OUT} + 1V \le V_{IN} \le 18V$ | | 0.1 | 0.2 | %/V | | △VOUT/△Ta | Temperature<br>Coefficient | V <sub>IN</sub> =V <sub>OUT</sub> +1V, I <sub>OUT</sub> =40mA<br>-40℃ <ta<85℃< td=""><td></td><td>±0.7</td><td></td><td>mV/℃</td></ta<85℃<> | | ±0.7 | | mV/℃ | #### Note: 1. V<sub>OUT</sub> (T): Specified Output Voltage 2.V<sub>OUT</sub> (E): Effective Output Voltage (ie. The output voltage when "V<sub>OUT</sub> (T)+ 1.0V" is provided at the Vin pin while maintaining a certain I<sub>OUT</sub> value.) 3.V<sub>DIF</sub>: V<sub>IN1</sub> –V<sub>OUT</sub> (E)' $V_{IN1}$ : The input voltage when $V_{OUT}(E)$ appears as input voltage is gradually decreased. $V_{OUT}$ (E)'=A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{OUT}$ and $\{V_{OUT}(T)+1.0V\}$ is input. #### **Precautions** - During the test, if AC/DC power supply and the ceramic chip capacitors collocation are used, there may be serious voltage spike phenomenon instantaneously. When the power supply access to 16V, the voltage is rushed to about 30V instantaneously. Because of exceeding the limit voltage of chip, the chip is damaged. If you string a small resistance of 1 ohm in the input end during the test, the peak phenomenon can be avoided. - In the test, there is serious burr phenomenon only when the AC/DC power is used with ceramic chip capacitors. But electrolytic capacitors and tantalum capacitance won't appear above phenomenon. Please be sure to pay attention to this point when you use AC/DC power. - In normal use, when any type of capacitor is used with battery or the supply of fire power, the above phenomenon doesn't occur. V04 www.microne.com.cn Page 4 of 8 # Packaging Information: # • SOT23-3 | DIM | Millimeters | | Inches | | | |-----|-------------|------|--------|--------|--| | | Min | Max | Min | Max | | | А | 2.7 | 3.1 | 0.1063 | 0.122 | | | В | 1.7 | 2.1 | 0.0669 | 0.0827 | | | b | 0.35 | 0.5 | 0.0138 | 0.0197 | | | С | 1.0 | 1.2 | 0.0394 | 0.0472 | | | С | 0.1 | 0.25 | 0.0039 | 0.0098 | | | d | 0.2 | - | 0.0079 | - | | | Е | 2.6 | 3.0 | 0.1023 | 0.1181 | | | е | 1.5 | 1.8 | 0.059 | 0.0708 | | V04 <u>www.microne.com.cn</u> Page 5 of 8 ## ● SOT89-3 | DIM | Millimeters | | Inches | | |-----|-------------|------|--------|--------| | DIM | Min | Max | Min | Max | | А | 1.4 | 1.6 | 0.0551 | 0.0630 | | A1 | 1.4 | 1.6 | 0.0551 | 0.0630 | | а | 0.36 | 0.48 | 0.0142 | 0.0189 | | b | 0.41 | 0.53 | 0.0161 | 0.0209 | | С | 0.36 | 0.48 | 0.0142 | 0.0189 | | d | 1.4 | 1.75 | 0.0551 | 0.0689 | | В | 0.38 | 0.43 | 0.015 | 0.0169 | | С | 1.4 | 1.6 | 0.0551 | 0.0630 | | D | 4.4 | 4.6 | 0.1732 | 0.181 | | E | - | 4.25 | - | 0.1673 | | е | 2.4 | 2.6 | 0.0945 | 0.1023 | | L1 | 0.4 | - | 0.0157 | - | | L2 | 0.8 | - | 0.0315 | - | ## • TO-92 | | Min | Max | Min | Max | |----|------|------|---------|--------| | Α | 3.4 | 3.8 | 0.13386 | 0.1496 | | В | 0.3 | 0.5 | 0.0118 | 0.0197 | | С | 4.4 | 4.8 | 0.1732 | 0.189 | | D | 4.4 | 4.8 | 0.1732 | 0.189 | | E | 0.9 | 1.5 | 0.0354 | 0.059 | | е | 1.17 | 1.37 | 0.046 | 0.0539 | | e1 | 2.39 | 2.69 | 0.094 | 0.1059 | | L | 12 | 16 | 0.4724 | 0.6299 | - The information described herein is subject to change without notice. - Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design. - Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited. - The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc. - Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. V04 www.microne.com.cn Page 8 of 8